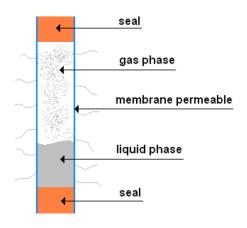
Permeation tubes


Description

Permeation tubes are small containers filled with a pure chemical compound in a two-phase equilibrium between its gas phase and liquid phase. The containers are in suitable inert polymeric material and at a constant temperature; the device emits the compound through permeable wall with a constant rate.

The permeate is mixed with a carrier gas at a controlled flow rate to obtain a known mixture used as reference in gas testing equipment.

A wide range of permeation rates can be made, normally from $20\mu g/min$ to $500 \mu g/min$, and accurate, stable concentrations range from ppb to high ppm.

Advantages of permeation tubes :

Use pure substances in an inert matrix

- Precise concentrations;
- Easily generated with traceablity established from protocol U.S. EPA-600/R-97/121, Section 3, procedure P3 (see calibration certificate)
- Several tubes can be used simultaneously to obtain a mixture, removal and/or addition of a single component is simple
- Wide range of concentrations easily generated by varying the dilution flow rate and/or the set point temperature;
- Consistent concentrations for extended periods of time
- A relatively inexpensive source of standard gas.

Applications

Often the gas standards in cylinder mixtures are very reactive and instable, especially at low concentrations. Permeatiion tubes are ideal devices in generation of calibration gas standard for:

- air quality analyzers and gas analyzers;
- FTIR;
- gas chromatograph;
- GC-MS;
- Ion Mobility Spectrometer.

With permeation devices is possible modify the mixtures components simply removing and/or auditioning a single tube in permeation chamber. Permeation devices are utilized in:

- petrochemical plants and refinery;
- semiconductor industry (trace moisture standard);
- gas sensor development;
- test with controlled atmosphere; Catalyst test with synthetic gas.

Specifications

Certified with accuracy of 5%, Available with special certification ±2%, Range of permeation rate ±25% Dimensions in mm :

- diameter max 10,0;

- length max 180,0 and proportional to desired permeation rate.

Certified with accuracy of 5%, Available with special certification $\pm 2\%$ Range of permeation rate $\pm 25\%$ Dimensions in mm :

- diameter max 9;

- length max 84 + length of permeable tube proportional to desired perm rate. Certified with accuracy of 5%, Available with special certification $\pm 2\%$ Range of permeation rate $\pm 25\%$ Dimensions in mm :

- diameter 16,4;
- length 46,5.

Certified with accuracy of 5%, Available with special certification $\pm 2\%$ Range of permeation rate $\pm 25\%$ Dimensions in mm :

- diameter 9.5;

- max length 88.

Options – Accessories – Spare parts

List of most common available substances

Acetaldehyde C2H4O Acetic Acid C2H4O2 Acetone C3H6O Acetone-d6 CD3COCD3 Acetonitrile CH3CN Acrolein C3H4O Acrylic Acid C3H4O2 Acrylonitrile C2H3N Allyl Alcohol C3H5OH Ammonia NH3 n-Amyl Mercaptan C5H11SH tert-Amyl Mercaptan C5H11SH Aniline C6H7N Benzaldehyde C6H5CHO Benzene C6H6 Benzene Sulfonyl Chloride Bromine Br2 1,3-Butadiene C4H6 n-Butane C4H10 1-Butanol C4H9OH 2-Butanone (MEK) CH3COC2H5 1-Butene C4H8 Butyl Acetate CH3COOC4H9 Butyl Acrylate C7H12O2 Butyl Benzene C6H5C4H9 Butyl Carbitol C8H18O3 Butyl Glycidyl Ether C6H13O2 n-Butyl Mercaptan C4H9SH sec-Butyl Mercaptan C4H9SH tert-Butyl Mercaptan C4H9SH Butyl Cellosolve C4H9OC2H4OH Butyraldehyde C3H7CHO Butyric Acid C4H8O2 Carbon Disulfide CS2 Carbon Tetrachloride CCl4 Carbonyl sulfide COS Chloroacetyl chloride CICH2COCI 2'-Chloroacetophenone ClC6H4COCH3

Gaslabo Inc.

tel: +1 514-795-6767 email: info@gaslabo.com www.gaslabo.com Chlorobenzene C6H5Cl Chloroethane C2H5Cl Chloroform CHCl3 Chloromethane CH3Cl 2-Chlorotoluene CH3C6H4Cl Cyclohexane C6H12 Cyclohexanone C6H10(=O) Cyclopentane C5H10 n-Decane CH3(CH2)8CH3 Diallyl sulfide (CH2=CHCH2)2S 1,2-Dichlorobenzene C6H4Cl2 1.2-Dichloroethane CH3CHCl2 Dichloromethane CH2Cl2 Diethyl Disulfide (C2H5)2S2 Diethyl Sulfide (C2H5)2S Dimethylamine (CH3)2NH Dimethyl Disulfide (CH3)2S2 Dimethyl Ether (CH3)2O Dimethyl Sulfide (CH3)2S 2,4-Dinitrotoluene CH3C6H3(NO2)2 Dipropyl Sulfide (CH3CH2CH2)2S Dipropylene Glycol Dimethyl Ether СНЗОСЗН6ОСЗН6ОСНЗ (±)-Epichlorohydrin C3H5ClO Ethanol CH3CH2OH Ethyl Acetate CH3COOC2H5 Ethylbenzene C6H5C2H5 Ethyl Mercaptan C2H5SH Formaldehyde (para) HCHO Formic Acid HCOOH Furan C4H4O n-Heptane CH3(CH2)5CH3 n-Hexane CH3(CH2)4CH3 1-Hexanol CH3(CH2)5OH Hydrazine Monohydrate NH2NH2 · H2O Hydrogen Bromide HBr Hydrogen Chloride HCl Hydrogen Fluoride HF

Hydrogen Sulfide H2S Iodine I2 Isoamyl alcohol (CH3)2CHCH2CH2OH 7 Isobutylene (CH3)2C=CH2 Isopropyl Alcohol (CH3)2CHOH Isopropyl Mercaptan CH3)2CHSH (+) Limonene C10H16 Mercury Hg Methanol CH3OH Methyl Acetate CH3COOCH3 Methyl Cyclohexane C6H11CH3 Methyl Cyclopentane C5H9CH3 Methyl Ethyl Ketone C2H5COCH3 Methyl Mercaptan CH3SH 2-Methylthiophene C5H6S Naphthalene C10H8 Nitrogen Dioxide NO2 2-Nitrotoluene CH3C6H4NO2 n-Propyl Mercaptan CH3CH2CH2SH Pyridine C5H5N Styrene C6H5CH=CH2 Sulfur Dioxide SO2 Sulfur Hexafluoride SF6 Tetrahydrothiophene C4H8S Thiophene C4H4S Toluene C6H5CH3 Toluene-d8 C6D5CD3 Trichlorobenzene C6H3Cl3 1.1.1-Trichloroethane CI3CCH3 Trimethylamine (CH3)3N 1,2,4-Trimethylbenzene C6H3(CH3)3 1,3,5-Trimethylbenzene C6H3(CH3)3 Vinyl Chloride H2C=CHCl Water H2O o-Xylene C6H4(CH3)2 m-Xylene C6H4(CH3)3 p-Xylene C6H4(CH3)4

